
GEFS, A Good Enough File System

Ori Bernstein
ori@eigenstate.org

ABSTRACT

GEFS is a new file system built for Plan 9. It aims to be a crash-safe,
corruption-detecting, simple, and fast snapshotting file system, in that
order. GEFS achieves these goals by building a traditional 9p file system
interface on top of a forest of copy-on-write Bµ trees. It doesn�t try to be
optimal on all axes, but good enough for daily use.

1. The Current Situation

Currently, Plan 9 has several general purpose disk file systems available. All of
them share a common set of problems. On power loss, the file systems tend to get cor
rupted, requiring manual recovery steps. Silent disk corruption is not caught by the file
system, and reads will silently return incorrect data. They tend to require a large,
unshrinkable disk for archival dumps, and behave poorly when the disk fills. Addition
ally, all of them do O(n) scans to look up files in directories when walking to a file. This
causes poor performance in large directories.

CWFS, the default file system on 9front, has proven to be performant and reliable,
but is not crash safe. While the root file system can be recovered from the dump, this is
inconvenient and can lead to a large amount of lost data. It has no way to reclaim space
from the dump. In addition, due to its age, it has a lot of historical baggage and com
plexity.

HJFS, a new experimental system in 9front, is extremely simple, with fewer lines of
code than any of the other on-disk storage options. It has dumps, but does not sepa
rate dump storage from cache storage, allowing full use of small disks. However, it is
extremely slow, not crash safe, and lacks consistency check and recovery mechanisms.

Finally, fossil, the default file system on 9legacy, is large and complicated. It uses
soft-updates for crash safety[7], an approach that has worked poorly in practice for the
BSD filesystems[8]. Fossil also has a history (and present) of deadlocks and crashes due
its inherent complexity. There are regular reports of deadlocks and crashes when using
tools such as clone[9]. While the bugs can be fixed as they�re found, simplicity requires
a rethink of the on disk data structures. And even after adding all this complexity, the
fossil+venti system provides no way to recover space when the disk fills.

2. How GEFS Solves it

GEFS aims to solve the problems with these file systems. The data and metadata is
copied on write, with atomic commits. If the file server crashes before the superblocks
are updated, then the next mount will see the last commit that was synced to disk.
Some data may be lost, by default up to 5 seconds worth, but no corruption will occur.
Furthermore, because of the use of an indexed data structures, directories do not suffer
from O(n) lookups, solving a long standing performance issue with large directories.



 2 

While snapshots are useful to keep data consistent, disks often fail over time. In
order to detect corruption and allow space reclamation, block pointers are triples of
64-bit values: The block address, the block hash, and the generation that they were
born in. If corrupted data is returned by the underlying storage medium, this is
detected via the block hashes. The corruption is reported, and the damaged data may
then be recovered from backups, RAID restoration, or some other means. Eventually,
the goal is to make GEFS self-healing.

Archival dumps are replaced with snapshots. Snapshots may be deleted at any
time, allowing data within a snapshot to be reclaimed for reuse. To enable this, in addi
tion to the address and hash, each block pointer contains a birth generation. Blocks are
reclaimed using a deadlist algorithm inspired by ZFS.

Finally, the entire file system is based around a relatively novel data structure. This
data structure is known as a Bµ tree [1]. It�s a write optimized variant of a B+ tree,
which plays particularly nicely with copy on write semantics. This allows GEFS to greatly
reduce write amplification seen with traditional copy on write B-trees.

And as a bonus, it solves these problems with less complexity. By selecting a suit
able data structure, a large amount of complexity elsewhere in the file system falls
away. The complexity of the core data structure pays dividends. Being able to atomi
cally update multiple attributes in the Bµ tree, making the core data structure safely
traversable without locks, and having a simple, unified set of operations makes every
thing else simpler. As a result, the total source size of GEFS is currently 8737 lines of
code, as compared to CWFS at 15634, and the fossil/venti system at 27762 lines of code
(20429 for fossil, with an additional 7333 lines for Venti).

3. Bε Trees: A Short Summary

The core data structure used in GEFS is a Bµ tree. A Bµ tree is a modification of a
B+ tree, which optimizes writes by adding a write buffer to the pivot nodes. Like B-
trees, Bµ trees consist of leaf nodes, which contain keys and values, and pivot nodes.
Like B-trees, the pivot nodes contain pointers to their children, which are either pivot
nodes or leaf nodes. Unlike B-trees, the pivot nodes also contain a write buffer.

The Bµ tree implements a simple key-value API, with point queries and range
scans. It diverges form a traditional B-tree key value store by the addition of an upsert
operation. Upsert operations are operations that insert a modification message into the
tree. These modifications are addressed to a key.

To insert to the tree, the root node is copied, and the new message is inserted into
its write buffer. When the write buffer is full, it is inspected, and the number of mes
sages directed to each child is counted up. The child with the largest number of pend
ing writes is picked as the victim, and the root�s write buffer is flushed towards it. This
proceeds recursively down the tree, until either an intermediate node has sufficient
space in its write buffer, or the messages reach a leaf node, at which point the value in
the leaf is updated.

In order to query a value, the tree is walked as normal, however the path to the leaf
node is recorded. When a value is found, the write buffers along the path to the root
are inspected, and any messages that have not yet reached the leaves are applied to the
final value read back.

Because mutations to the leaf nodes are messages that describe a mutation,
updates to data may be performed without inspecting the data at all. For example,
when writing to a file, the modification time and QID version of the file may be incre
mented without inspecting the current QID; a �new version� message may be upserted
instead. This allows skipping read-modify-write cycles that access distant regions of
the tree, in favor of a simple insertion into the root nodes write buffer. Additionally,
because all upserts go into the root node, a number of operations may be upserted in a



 3 

single update. As long as we ensure that there is sufficient space in the root node�s
write buffer, the batch insert is atomic. Inserts and deletions are upserts, but so are
mutations to existing data.

k0 k16 k32 k48 m0 m1

k0 k4 k8 k12 m0 m1 ... k48 k56 k60 k64 m0 m1

k0 v0 ... k3 v3 k4 v4 ... k7 v7 ... k48 v49 ... k54 v55

In GEFS, for the sake of simplicity all blocks are the same size. Unfortunately, this
implies that the Bµ tree blocks are smaller than optimal, and the disk blocks are larger
than optimal.

Within a single block, the pivot keys are stored as offsets to variable width data.
The data itself is unsorted, but the offsets pointing to it are sorted. This allows O(1)
access to the keys and values, while allowing variable sizes.

o0 o1 o2 unused k2 v2 k0 v0 k1 v1

In order to allow for efficient copy on write operation, the Bµ tree in GEFS relaxes
several of the balance properties of B-trees [5]. It allows for a smaller amount of fill
than would normally be required, and merges nodes with their siblings opportunisti
cally. In order to prevent sideways pointers between sibling nodes that would need copy
on write updates, the fill levels are stored in the parent blocks, and updated when
updating the child pointers.

4. Mapping Files to Bε Operations

With a description of the core data structure completed, we now need to describe
how a file system is mapped on to Bµ trees.

A GEFS file system consists of a snapshot tree, which points to a number of file sys
tem trees. The snapshot tree exists to track snapshots, and will be covered later. Each
snapshot points to a single GEFS metadata tree, which contains all file system state for a
single version of the file system. GEFS is somewhat unique in that all file system data is
recorded within a single flat key value store. There are no directory structures, no indi
rect blocks, and no other traditional structures. Instead, GEFS has the following key-
value pairs:

Kdat(qid, offset) → (ptr)

Data keys store pointers to data blocks. The key is the file qid, concatenated to the
block-aligned file offset. The value is the pointer to the data block that is being
looked up.

Kent(pqid, name) → (stat)

Entry keys contain file metadata. The key is the qid of the containing directory,
concatenated to the name of the file within the directory. The value is a stat struct,
containing the file metadata, including the qid of the directory entry.

Kup(qid) → Kent(pqid, name)

Up keys are maintained so that �..� walks can find their parent directory. The key is
the qid of the directory. The value is the key for the parent directory.



 4 

Walking a path is done by starting at the root, which has a parent qid of ~0, and a
name of "/". The QID of the root is looked up, and the key for the next step on the walk
is constructed by concatenating the walk element with the root qid. This produces the
key for the next walk element, which is then looked up, and the next key for the walk
path is constructed. This continues until the full walk has completed. If one of the path
elements is �..� instead of a name, then the super key is inspected instead to find the
parent link of the directory.

If we had a file hierarchy containing the paths �foo/bar�, �foo/baz/meh�, �quux�,
�blorp�, with �blorp� containing the text �hello world�, this file system may be repre
sented with the following set of keys and values:

Kdat(qid=3, off=0) → Bptr(off=0x712000, hash=04a73, gen=712)
Kent(pqid=1, name=’blorp’) → Dir(qid=3, mode=0644, ...)
Kent(pqid=1, name=’foo’) → Dir(qid=2, mode=DMDIR|0755, ...)
Kent(pqid=1, name=’quux’) → Dir(qid=4, mode=0644, ...)
Kent(pqid=2, name=’bar’) → Dir(qid=6, mode=DMDIR|0755, ...)
Kent(pqid=2, name=’baz’) → Dir(qid=5, mode=DMDIR|0755, ...)
Kent(pqid=5, name=’meh’) → Dir(qid=5, mode=0600, ...)
Kent(pqid=−1, name=’’) → Dir(qid=1, mode=DMDIR|0755, ...)
Kup(qid=2) → Kent(pqid=−1, name=’’)
Kup(qid=5) → Kent(pqid=2, name=’foo’)

Note that all of the keys for a single directory are grouped because they sort together,
and that if we were to read a file sequentially, all of the data keys for the file would be
similarly grouped.

If we were to walk foo/bar then we would begin by constructing the key
Kent(−1, ’’) to get the root directory entry. The directory entry contains the qid.
For this example, let�s assume that the root qid is 123. The key for foo is then con
structed by concatenating the root qid to the first walk name, giving the key
Kent(123, foo) This is then looked up, giving the directory entry for foo. If the
directory entry contains the qid 234, then the key Kent(234, bar) is then con
structed and looked up. The walk is then done.

Because a Bµ tree is a sorted data structure, range scans are efficient. As a result,
listing a directory is done by doing a range scan of all keys that start with the qid of the
directory entry.

Reading from a file proceeds in a similar way, though with less iteration: When writ
ing to a file, the qid is known, so the block key is created by concatenating the file qid
with the read offset. This is then looked up, and the address of the block containing the
data is found. The block is then read, and the data is returned.

Writing proceeds in a similar manner to reading, and in the general case begins by
looking up the existing block containing the data so that it can be modified and
updated. If a write happens to fully cover a data block, then a blind upsert of the data is
done instead. Atomically along with the upsert of the new data, a blind write of the ver
sion number incremnt, mtime, and muid is performed.

Stats and wstat operations both construct and look up the keys for the directory
entries, either upserting modifications or reading the data back directly.

5. Snapshots

GEFS supports snapshots. Each snapshot is referred to by a unique integer id, and
is fully immutable once it is taken. For human use, a snapshot may be labeled. The
labels may move to new snapshots, either automatically if they point to a tip of a snap
shot, or via user intervention. For the sake of space reclamation, snapshots are refer
ence counted. Each snapshot takes a reference to the snapshot it descends from. Each
label also takes a reference to the snapshot that it descends from. When a snapshot�s



 5 

only reference is its descendant, then it is deleted, and any space it uses exclusively is
reclaimed. The only structure GEFS keeps on disk are snapshots, which are taken every
5 seconds. This means that in the case of sudden termination, GEFS may lose up to 5
seconds of data, but the data on disk will always be consistent.

If there was no space reclamation in gefs, then snapshots would be trivial. The
tree is copy on write. Therefore, as long as blocks are never reclaimed, it would be suf
ficient to save the current root of the tree once all blocks in it were synced to disk.
However, because snapshots are taken every 5 seconds, disk space would get used
uncomfortably quickly. As a result, space needs to be reclaimed. An advantage of Bµ

trees here is that often, only the root block will be copied, and updates will be inserted
into its write buffer.

piv buf piv buf

piv buf ... piv buf

vals vals ... vals

There are a number of options for space reclamation. Some that were considered
when implementing GEFS included garbage collection, in the style of HAMMER [3], or
optimized reference counting in the style of BTRFS [4], but both of these options have
significant downsides. Garbage collection requires that the entire disk get scanned to
find unreferenced blocks. This means that there are scheduled performance degrada
tions, and in the limit of throughput, the bandwidth spent scanning must approach the
bandwidth spent on metadata updates, as each block must be scanned and then
reclaimed. Reference counting implies a large number of scattered writes to maintain
the reference counts of blocks.

As a result, the algorithm for space reclamation is lifted directly from ZFS [6]. It is
based on the idea of using deadlists to track blocks that became free within a snapshot.
If snapshots are immutable, then a block may not be freed as long as a snapshot exists.
This implies that block lifetimes are contiguous. A block may not exist in a snapshot
and be available for reallocation. Thus, when freeing a block, there are 2 cases: Either a
block was born within the pending snapshot, and died within it, or it was born in a pre
vious snapshot and was killed by the pending snapshot.

To build intuition, let�s start by imagining the crudest possible implementation of
snapshot space reclamation. Assuming that block pointers contain their birth genera
tion, we can walk the entire tree. When a block�s birth time is <= the previous snap
shot, it is referred to by an older snapshot. We may not reclaim it. If the subsequent
snapshot refers to this block, then it was born in this snapshot but is still in use. We
may not reclaim it. Otherwise, the block is free, and we can reclaim it.

Obviously, this is slow: It involves full tree walks of multiple snapshots. It may
walk large numbers of blocks that are not freed.

So, in order to do better, we can keep track of blocks that we want to delete from
this snapshot as we delete them, instead of trying to reconstruct the list when we delete
the snapshot. When we attempt to delete a block, there are two cases: First, block�s
birth time may be newer than the previous snapshot, in which case it may be freed
immediately. And second, the block may have been born in the previous snapshot or
earlier, in which case we need to put it on the current snapshot�s deadlist. When the
current snapshot is deleted, the current snapshot�s deadlist is merged with the next



 6 

snapshot�s deadlist. All blocks on the deadlist that were born after the previous snap
shot are freed.

prev

del

next

merge

prev del next

There�s one further optimization we can do on top of this to make deletions
extremely fast. The deadlists may be sharded by birth generation. When a snapshot is
deleted, all deadlists within the snapshot are appended to the descendant snapshot, and
any deadlists with a birth time after the deleted snapshot in the descendant may be
reclaimed. With this approach, the only lists that need to be scanned are the ones con
sisting wholly of blocks that must be freed.

b0

b1

b2

prev (gen = 2)

b0

b1

b2

del (gen = 7)

b0

b1

b7 (free)

next (gen = 9)

merge

prev del next

The disadvantage of this approach is that appending to the deadlists may need
more random writes. This is because in the worst case, blocks deleted may be scattered
across a large number of generations. It seems likely that in practice, most bulk dele
tions will touch files that were written in a small number of generations, and not scat
tered across the whole history of the disk.

The information about the snapshots, deadlists, and labels are stored in a separate
snapshot tree. The snapshot tree, of course, can never be snapshotted itself. However,
it�s also a copy on write Bµ tree where blocks are reclaimed immediately. It�s kept con
sistent by syncing both the root of the snapshot tree and the freelists at the same time.
If any blocks in the snapshot tree are freed, this freeing is only reflected after the snap
shot tree is synced to disk fully.

The key-value pairs in the snapshot tree are stored as follows

Ksnap(id) → (tree)

Snapshot keys take a unique numeric snapshot id. The value contains the tree
root. This includes the block pointer for the tree, the snapshot generation of the
tree, the previous snapshot of the tree, its reference count, and its height.

Klabel(name) → (snapid)

Label keys contain a human-readable string identifying a snapshot. The value is a
snapshot id. Labels regularly move between snapshots. When mounting a mutable
snapshot, the label is updated to point at the latest snapshot every time the tree is
synced to disk.

Kslink(snap, next) → ()

A snap link key contains a snapshot id, and the id of one of its successors. Ideally,
the successor would be a value, but our Bµ tree requires unique keys, so we hack
around it by putting both values into the key. When we have exactly one next link,
and no labels that point at this snapshot, we merge with our successor.



 7 

Kdead(snap, gen) → (headptr, tailptr)

A dead key contains a pair of snapshot id and deadlist generation. The value con
tains a head and tail pointer for a deadlist. These are used to quickly look up and
merge deadlists, as described earlier in this paper.

6. Block Allocation

In GEFS, blocks are allocated from arenas. Within an arena, allocations are stored
in a linked list of blocks, which is read at file system initialization. The blocks contain a
journal of free or allocate operations, which free or allocate regions of disk. When the
file system starts, it replays this log of allocations and frees, storing the available
regions of blocks in an in-memory AVL tree. As the file system runs, it appends to the
free space log, and occasionally compresses this log, collapsing adjacent free or used
blocks into larger regions.

Because of the copy on write structure, it�s fairly common for metadata blocks to
get allocated and deallocated rapidly. Drives (even solid state drives) care a lot about
sequential access, so it�s beneficial to make a best effort attempt at keeping data
sequential. As a result, GEFS selects the arena to allocate from via round robin, offset
ting by the type of block. If the round robin counter is 10, and we have 7 arenas, then
data blocks (type 0) are allocated from arena 3 ((10+0)%7), pivot blocks (type 1) are allo
cated from arena 4 ((10+1)%7), and leaf blocks (type 2) are allocated from arena 5
((10+2)%7). The round robin counter is incremented after every few thousand block
writes, in order to balance writes across arenas. Since all arenas are the same, if an
arena is full, we simply advance to the next arena.

7. Process Structure

GEFS is implemented in a multiprocess manner. There is one protocol proc per
posted service or listener, which dispatches 9p messages to the appropriate worker.
Read-only messages get dispatched to one of many reader procs. Write messages get
dispatched to the mutator proc, which modifies the in-memory representation of the file
system. The mutator proc sends dirty blocks to the syncer procs. There is also a task
proc which messages the mutator proc to do periodic maintenance such as syncing.
The console proc also sends messages to the mutator proc to update snapshots and do
other file system maintenance tasks.

cons

task

srv

mutator

reader0

reader1

syncer0

syncer1

syncer2

Because the file system is copy on write, as long as the blocks aren�t reclaimed
while a reader is accessing the tree, writes need not block reads. However, if a block is
freed within the same snapshot, it�s possible that a reader might observe a block with
an inconsistent state. This is handled by using epoch based reclamation to free blocks.

When a proc starts to operate on the tree, it enters an epoch. This is done by atom
ically taking the current global epoch, and setting the proc�s local epoch to that, with an
additional bit set to indicate that the proc is active:

epoch[pid] = atomic_load(globalepoch) | Active



 8 

As the mutator frees blocks, instead of immediately making them reusable, it puts the
blocks on the limbo list for its generation:

limbo[gen] = append(limbo[gen], b)

When the proc finishes operating on the tree, it leaves the epoch by clearing the active
bit. When the mutator leaves the current epoch, it also attempts to advance the global
epoch. This is done by looping over all worker epochs, and checking if any of them are
active in an old epoch. If the old epoch is empty, then it�s safe to advance the current
epoch and clear the old epoch�s limbo list.

ge = atomic_load(globalepoch);
for(w in workers){

e = atomic_load(epoch[w]);
if((e & Active) && e != (ge | Active))

return;
}
globalepoch = globalepoch+1
freeblks(limbo[globalepoch − 2])

This epoch based approach allows GEFS to avoid contention between writes and
reads. A writer may freely mutate the tree as multiple readers traverse it, with no lock
ing between the processes, beyond what is required for the 9p implementation. There
is still contention on the FID table, the block cache, and a number of other in-memory
data structures.

The block cache is currently a simple LRU cache with a set of preallocated blocks.

8. Future Work

Currently, GEFS is buggy, and the disk format is still subject to change. In its cur
rent state, it would be a bad idea to trust your data to it. Testing and debugging is
underway, including simulating disk failures for every block written. In addition, disk
inspection and repair tools would need to be written. Write performance is also accept
able, but not as good as I would like it to be. We top out at several hundred megabytes
per second. A large part of this is that for simplicity, every upsert to the tree copies the
root block. A small sorted write buffer in an AVL tree that gets flushed when the root
block would reach disk would greatly improve write performance.

On top of this, I have been convinced that fs(3) is not the right choice for RAID.
Therefore, I would like to implement RAID directly in GEFS. When implementing RAID5
naïvely, there is a window of inconsistency where a block has been replicated to only
some devices, but not all of them. This is known as the "write hole". Implementing mir
roring natively would allow the file system to mirror the blocks fully before they appear
in the data structures. Having native RAID would also allow automatic recovery based
on block pointer hashes. This is not possible with fs(3), because if one copy of a block
is corrupt, fs(3) would not know which one had the incorrect data.

Furthermore, growing the file system would be extremely useful for taking flashed
disk images and growing them to the full size of the underlying storage. The way that
arenas work allows for this to happen fairly easily, but right now there�s no way to
change the list of arenas. Additionally, the naive round robin allocation across arenas
works doesn�t allow for balancing.

There are a number of disk-format changing optimizations that should be done.
For example, small writes should be done via blind writes to the tree. This would allow
small writes to be blindingly fast, and give us the ability to keep small files directly in
the values of the tree, without allocating a disk block for them.



 9 

Deletion of files could also be done via a range deletion. Currently, each block
deleted requires an upsert to the tree, which makes file deletion O(n) with a relatively
high cost. Moving to a range deletion makes deletion blindingly fast, at the cost of a
large amount of complexity: The deletion message would need to split as it gets flushed
down the tree. It�s an open question whether the benefit is worth the complexity.

Finally, it would be good to find a method of supporting narrow snapshots, where
only a range of the file hierarchy is retained.

9. References

[1] Michael A. Bender, Martin Farach-Colton, William Jannen, Rob Johnson, Bradley C.
Kuszmaul, Donald E. Porter, Jun Yuan, and Yang Zhan,

��An Introduction to Bµ Trees and Write-Optimization,�� ;login:,
October 2015, Vol. 40, No. 5" ,

[2] William Jannen, Jun Yuan, Yang Zhan, Amogh Akshintala, John Esmet, Yizheng Jiao,
Ankur Mittal, Prashant Pandey, Phaneendra Reddy, Leif Walsh, Michael Bender, Martin
Farach-Colton, Rob Johnson, Bradley C. Kuszmaul, and Donald E. Porter, ��BetrFS: A
Right-Optimized Write-Optimized File System,�� Proceedings of the 13th USENIX
Conference on File and Storage Technologies, 2015

[3] Matthew Dillon, "The HAMMER Filesystem," June 2008.

[4] Ohad Rodeh, Josef Bacik, Chris Mason, "BTRFS: The Linux B-Tree Filesystem" ACM
Transactions on Storage, Volume 9, Issue 3, Article No 9, pp 1−32, August 2013

[5] Ohad Rodeh, "B-trees, Shadowing, and Clones",

H−0245(H0611-006) November 12, 2006

[6] Matt Ahrens, �� How ZFS Snapshots Really Work,�� BSDCan, 2019

[7] Gregory R. Ganger, Marshall Kirk McKusick, Craig A. N. Soules, and Yale N. Patt.
��Soft Updates: A Solution to the Metadata Update Problem in File Systems,�� ACM
Transactions on Computer Systems, Vol 18., No. 2, May 2000, pp. 127�153.

[8] Valerie Aurora, ��Soft updates, hard problems�� Linux Weekly News, July 1, 2009,
https://lwn.net/Articles/339337/

[9] kvik, Clone, https://shithub.us/kvik/clone/HEAD/info.html


